Sensor-based human activity recognition can benefit a variety of applications such as health care, fitness, smart homes, rehabilitation training, and so forth. In this paper, we propose a novel two-layer diversity-enhanced multiclassifier recognition method for single wearable accelerometer-based human activity recognition, which contains data-based and classifier-based diversity enhancement. Firstly, we introduce the kernel Fisher discriminant analysis (KFDA) technique to spatially transform the training samples and enhance the discrimination between activities. In addition, bootstrap resampling is utilized to increase the diversities of the dataset for training the base classifiers in the multiclassifier system. Secondly, a combined diversity measure for selecting the base classifiers with excellent performance and large diversity is proposed to optimize the performance of the multiclassifier system. Lastly, majority voting is utilized to combine the preferred base classifiers. Experiments showed that the data-based diversity enhancement can improve the discriminance of different activity samples and promote the generation of base classifiers with different structures and performances. Compared with random selection and traditional ensemble methods, including Bagging and Adaboost, the proposed method achieved 92.3% accuracy and 90.7% recall, which demonstrates better performance in activity recognition.
Wearable Sensor-Based Human Activity Recognition via Two-Layer Diversity-Enhanced Multiclassifier Recognition Method.
阅读:3
作者:Tian Yiming, Wang Xitai, Chen Lingling, Liu Zuojun
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2019 | 起止号: | 2019 Apr 30; 19(9):2039 |
| doi: | 10.3390/s19092039 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
