MOTIVATION: Protein complexes are groups of polypeptide chains linked by non-covalent protein-protein interactions, which play important roles in biological systems and perform numerous functions, including DNA transcription, mRNA translation, and signal transduction. In the past decade, a number of computational methods have been developed to identify protein complexes from protein interaction networks by mining dense subnetworks or subgraphs. RESULTS: In this article, different from the existing works, we propose a novel approach for this task based on generative adversarial networks, which is called PCGAN, meaning identifying Protein Complexes by GAN. With the help of some real complexes as training samples, our method can learn a model to generate new complexes from a protein interaction network. To effectively support model training and testing, we construct two more comprehensive and reliable protein interaction networks and a larger gold standard complex set by merging existing ones of the same organism (including human and yeast). Extensive comparison studies indicate that our method is superior to existing protein complex identification methods in terms of various performance metrics. Furthermore, functional enrichment analysis shows that the identified complexes are of high biological significance, which indicates that these generated protein complexes are very possibly real complexes. AVAILABILITY AND IMPLEMENTATION: https://github.com/yul-pan/PCGAN.
PCGAN: a generative approach for protein complex identification from protein interaction networks.
阅读:4
作者:Pan Yuliang, Wang Yang, Guan Jihong, Zhou Shuigeng
| 期刊: | Bioinformatics | 影响因子: | 5.400 |
| 时间: | 2023 | 起止号: | 2023 Aug 1; 39(8):btad473 |
| doi: | 10.1093/bioinformatics/btad473 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
