Through advances in neural language modeling, it has become possible to generate artificial texts in a variety of genres and styles. While the semantic coherence of such texts should not be over-estimated, the grammatical correctness and stylistic qualities of these artificial texts are at times remarkably convincing. In this paper, we report a study into crowd-sourced authenticity judgments for such artificially generated texts. As a case study, we have turned to rap lyrics, an established sub-genre of present-day popular music, known for its explicit content and unique rhythmical delivery of lyrics. The empirical basis of our study is an experiment carried out in the context of a large, mainstream contemporary music festival in the Netherlands. Apart from more generic factors, we model a diverse set of linguistic characteristics of the input that might have functioned as authenticity cues. It is shown that participants are only marginally capable of distinguishing between authentic and generated materials. By scrutinizing the linguistic features that influence the participants' authenticity judgments, it is shown that linguistic properties such as 'syntactic complexity', 'lexical diversity' and 'rhyme density' add to the user's perception of texts being authentic. This research contributes to the improvement of the quality and credibility of generated text. Additionally, it enhances our understanding of the perception of authentic and artificial art.
Keepin' it real: Linguistic models of authenticity judgments for artificially generated rap lyrics.
阅读:6
作者:Karsdorp Folgert, Manjavacas Enrique, Kestemont Mike
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2019 | 起止号: | 2019 Oct 22; 14(10):e0224152 |
| doi: | 10.1371/journal.pone.0224152 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
