This study investigates the synthesis of monoglycerides (MGs) and diglycerides (DGs) from glycerol (G) and fatty acid methyl ester (FAME) using a static mixer reactor (SMR), which combines a static mixer (SM) with a reactor tank. The SMR integrates Kenics static mixers (KSM) and low-pressure drop static mixers (LPDSM) with varying length-to-diameter ratios (L/D = 1.0 and 1.5). Keys glycerolysis parameters, including the G:FAME molar ratio of 2:1-3:1, 2-3 wt % potassium hydroxide (KOH), and reaction time of 30-90 min at 150 °C were systematically explored. The SMR design allows precise control over the reaction time without altering the feed flow rate or tube length and avoiding agitator leakage. The optimal operating conditions, determined through a face-centered central composite design, resulted in 71.35% MGs and 14.20% DGs at a 3:1 molar ratio of G to FAME, 3 wt % KOH, 60 min, and 150 °C using an LPDSM with an L/D of 1.5. In comparison, an LPDSM with an L/D of 1 achieved 79.28% MGs and 10.17% DGs under the same conditions. When applied to purified crude glycerol, these conditions yielded 61.09% MGs and 23.44% DGs. The study found that a lower L/D ratio improved the mixing efficiency but increased the pressure drop. The SMR demonstrated superior performance in glycerolysis compared with conventional stirred tank reactors and ultrasonic probe reactors, indicating its potential for enhanced industrial application.
Enhanced Glycerolysis of Fatty Acid Methyl Ester by Static Mixer Reactor.
阅读:3
作者:Chetpattananondh Pakamas, Tabtimmuang Athcharaporn, Prasertsit Kulchanat
| 期刊: | ACS Omega | 影响因子: | 4.300 |
| 时间: | 2024 | 起止号: | 2024 Sep 12; 9(38):39703-39714 |
| doi: | 10.1021/acsomega.4c04858 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
