The pro-inflammatory cytokines IL-1β and TNFα are neurotrophic for enteric neurons.

阅读:3
作者:Gougeon P-Y, Lourenssen Sandra, Han Tian Y, Nair Dileep G, Ropeleski Mark J, Blennerhassett Michael G
Intestinal inflammation causes initial axonal degeneration and neuronal death but subsequent axon outgrowth from surviving neurons restores innervation density to the target smooth muscle cells. Elsewhere, the pro-inflammatory cytokines TNFα and IL-1β cause neurotoxicity, leading us to test their role in promoting enteric neuron death. In a rat coculture model, TNFα or IL-1β did not affect neuron number but did promote significant neurite outgrowth to twofold that of control by 48 h, while other cytokines (e.g., IL-4, TGFβ) were without effect. TNFα or IL-1β activated the NFκB signaling pathway, and inhibition of NFκB signaling blocked the stimulation of neurite growth. However, nuclear translocation of NFκB in smooth muscle cells but not in adjacent neurons suggested a dominant role for smooth muscle cells. TNFα or IL-1β sharply increased both mRNA and protein for GDNF, while the neurotrophic effects of TNFα or IL-1β were blocked by the RET-receptor blocker vandetanib. Conditioned medium from cytokine-treated smooth muscle cells mimicked the neurotrophic effect, inferring that TNFα and IL-1β promote neurite growth through NFκB-dependent induction of glial cell line-derived neurotrophic factor (GDNF) expression in intestinal smooth muscle cells. In vivo, TNBS-colitis caused early nuclear translocation of NFκB in smooth muscle cells. Conditioned medium from the intact smooth muscle of the inflamed colon caused a 2.5-fold increase in neurite number in cocultures, while Western blotting showed a substantial increase in GDNF protein. Pro-inflammatory cytokines promote neurite growth through upregulation of GDNF, a novel process that may facilitate re-innervation of smooth muscle cells and a return to homeostasis following initial damage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。