Deep learning can provide rapid brain age estimation based on brain magnetic resonance imaging (MRI). However, most studies use one neural network to extract the global information from the whole input image, ignoring the local fine-grained details. In this paper, we propose a global-local transformer, which consists of a global-pathway to extract the global-context information from the whole input image and a local-pathway to extract the local fine-grained details from local patches. The fine-grained information from the local patches are fused with the global-context information by the attention mechanism, inspired by the transformer, to estimate the brain age. We evaluate the proposed method on 8 public datasets with 8,379 healthy brain MRIs with the age range of 0-97 years. 6 datasets are used for cross-validation and 2 datasets are used for evaluating the generality. Comparing with other state-of-the-art methods, the proposed global-local transformer reduces the mean absolute error of the estimated ages to 2.70 years and increases the correlation coefficient of the estimated age and the chronological age to 0.9853. In addition, our proposed method provides regional information of which local patches are most informative for brain age estimation. Our source code is available on: https://github.com/shengfly/global-local-transformer.
Global-Local Transformer for Brain Age Estimation.
阅读:7
作者:He Sheng, Grant P Ellen, Ou Yangming
| 期刊: | IEEE Transactions on Medical Imaging | 影响因子: | 9.800 |
| 时间: | 2022 | 起止号: | 2022 Jan;41(1):213-224 |
| doi: | 10.1109/TMI.2021.3108910 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
