Genotype Performance Estimation in Targeted Production Environments by Using Sparse Genomic Prediction.

阅读:4
作者:Montesinos-López Osval A, Vitale Paolo, Gerard Guillermo, Crespo-Herrera Leonardo, Saint Pierre Carolina, Montesinos-López Abelardo, Crossa José
In plant breeding, Multi-Environment Trials (METs) evaluate candidate genotypes across various conditions, which is financially costly due to extensive field testing. Sparse testing addresses this challenge by evaluating some genotypes in selected environments, allowing for a broader range of environments without significantly increasing costs. This approach integrates genomic information to adjust phenotypic data, leading to more accurate genetic effect estimations. Various sparse testing methods have been explored to optimize resource use. This study employed Incomplete Block Design (IBD) to allocate lines to environments, ensuring not all lines were tested in every environment. We compared IBD to Random line allocation, maintaining a consistent number of environments per line across both methods. The primary objective was to estimate grain yield performance of lines using Genomic Estimated Breeding Values (GEBVs) computed through six Genomic Best Linear Unbiased Predictor (GBLUP) methods. In the first five methods, missing values were predicted before cross-environment adjustment; in the sixth, adjustment was performed directly. Using the Bayesian GBLUP model, we analyzed genotype performance under both IBD and random allocation. Results indicate that computing GEBVs for a target population of environments (TPE) using available phenotype and marker data is effective for selection. The IBD method showed superior performance with less variability compared to random allocation. These findings suggest that using IBD designs can enhance selection accuracy and efficiency, and that pre-adjustment prediction of missing lines may not necessarily improve selection outcomes.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。