Accurate estimation of transportation flow is a challenging task in Intelligent Transportation Systems (ITS). Transporting data with dynamic spatial-temporal dependencies elevates transportation flow forecasting to a significant issue for operational planning, managing passenger flow, and arranging for individual travel in a smart city. The task is challenging due to the composite spatial dependency on transportation networks and the non-linear temporal dynamics with mobility conditions changing over time. To address these challenges, we propose a Spatial-Temporal Graph Convolutional Recurrent Network (ST-GCRN) that learns from both the spatial stations network data and time series of historical mobility changes in order to estimate transportation flow at a future time. The model is based on Graph Convolutional Networks (GCN) and Long Short-Term Memory (LSTM) in order to further improve the accuracy of transportation flow estimation. Extensive experiments on two real-world datasets of transportation flow, New York bike-sharing system and Hangzhou metro system, prove the effectiveness of the proposed model. Compared to the current state-of-the-art baselines, it decreases the estimation error by 98% in the metro system and 63% in the bike-sharing system.
A Spatial-Temporal Graph Convolutional Recurrent Network for Transportation Flow Estimation.
阅读:4
作者:Drosouli Ifigenia, Voulodimos Athanasios, Mastorocostas Paris, Miaoulis Georgios, Ghazanfarpour Djamchid
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2023 | 起止号: | 2023 Aug 30; 23(17):7534 |
| doi: | 10.3390/s23177534 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
