The popularity of Greek-style yogurt (made from cow, ewe, and goat milk) has grown significantly in recent years thanks to its high protein content, nutritional value, and unique creamy texture, making it vulnerable to illegal practices, such as adulteration. In the present work, a fast and reliable matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)-based methodology was developed for the detection of yogurt adulteration with cow milk powder, exploiting the intact protein profile. An integrated protein-based workflow was established for the detection of as little as 1% cow milk powder addition into cow and goat milk yogurt. Simultaneously, markers for yogurt classification based on their animal origin (cow, ewe, or goat), type (traditional or strained), and thermal treatment of milk were revealed for the first time. Statistical analysis using chemometric tools, such as unsupervised principal component analysis (PCA) and supervised partial least squares discriminant analysis (PLS-DA) recognition techniques, were implemented for the discrimination/classification of the yogurt samples.
A Protein-Based Approach for Greek Yogurt Authentication via an HRMS Technique (MALDI-TOF MS) and Milk Powder Detection as a Fraudulent Addition.
阅读:4
作者:Krystalli Evangelia, Thomaidis Nikolaos, Kritikou Anastasia S, Kokkinos Christos
| 期刊: | Foods | 影响因子: | 5.100 |
| 时间: | 2025 | 起止号: | 2025 Feb 18; 14(4):693 |
| doi: | 10.3390/foods14040693 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
