Interest in anti-UAV detection systems has increased due to growing concerns about the security and privacy issues associated with unmanned aerial vehicles (UAVs). Achieving real-time detection with high accuracy, while accommodating the limited resources of edge-computing devices poses a significant challenge for anti-UAV detection. Existing deep learning-based models for anti-UAV detection often cannot balance accuracy, processing speed, model size, and computational efficiency. To address these limitations, a lightweight and efficient anti-UAV detection model, DRBD-YOLOv8, is proposed in this paper. The model integrates several innovations, including the application of a Re-parameterization Cross-Stage Efficient Layered Attention Network (RCELAN) and a Bidirectional Feature Pyramid Network (BiFPN), to enhance feature processing capabilities while maintaining a lightweight design. Furthermore, DN-ShapeIoU, a novel loss function, has been established to enhance detection accuracy, and depthwise separable convolutions have been included to decrease computational complexity. The experimental results showed that the proposed model outperformed YOLOV8n in terms of mAP50, mAP95, precision, and FPS while reducing GFLOPs and parameter count. The DRBD-YOLOv8 model is almost half the size of the YOLOv8n model, measuring 3.25 M. Its small size, fast speed, and high accuracy combine to provide a lightweight, accurate device that is excellent for real-time anti-UAV detection on edge-computing devices.
DRBD-YOLOv8: A Lightweight and Efficient Anti-UAV Detection Model.
阅读:8
作者:Jiang Panpan, Yang Xiaohua, Wan Yaping, Zeng Tiejun, Nie Mingxing, Liu Zhenghai
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2024 | 起止号: | 2024 Nov 7; 24(22):7148 |
| doi: | 10.3390/s24227148 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
