Improving mammography lesion classification by optimal fusion of handcrafted and deep transfer learning features.

阅读:6
作者:Jones Meredith A, Faiz Rowzat, Qiu Yuchen, Zheng Bin
Objective.Handcrafted radiomics features or deep learning model-generated automated features are commonly used to develop computer-aided diagnosis schemes of medical images. The objective of this study is to test the hypothesis that handcrafted and automated features contain complementary classification information and fusion of these two types of features can improve CAD performance.Approach.We retrospectively assembled a dataset involving 1535 lesions (740 malignant and 795 benign). Regions of interest (ROI) surrounding suspicious lesions are extracted and two types of features are computed from each ROI. The first one includes 40 radiomic features and the second one includes automated features computed from a VGG16 network using a transfer learning method. A single channel ROI image is converted to three channel pseudo-ROI images by stacking the original image, a bilateral filtered image, and a histogram equalized image. Two VGG16 models using pseudo-ROIs and 3 stacked original ROIs without pre-processing are used to extract automated features. Five linear support vector machines (SVM) are built using the optimally selected feature vectors from the handcrafted features, two sets of VGG16 model-generated automated features, and the fusion of handcrafted and each set of automated features, respectively.Main Results.Using a 10-fold cross-validation, the fusion SVM using pseudo-ROIs yields the highest lesion classification performance with area under ROC curve (AUC = 0.756 ± 0.042), which is significantly higher than those yielded by other SVMs trained using handcrafted or automated features only (p < 0.05).Significance.This study demonstrates that both handcrafted and automated futures contain useful information to classify breast lesions. Fusion of these two types of features can further increase CAD performance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。