Doppler Radar Sensor-Based Fall Detection Using a Convolutional Bidirectional Long Short-Term Memory Model.

阅读:4
作者:Li Zhikun, Du Jiajun, Zhu Baofeng, Greenwald Stephen E, Xu Lisheng, Yao Yudong, Bao Nan
Falls among the elderly are a common and serious health risk that can lead to physical injuries and other complications. To promptly detect and respond to fall events, radar-based fall detection systems have gained widespread attention. In this paper, a deep learning model is proposed based on the frequency spectrum of radar signals, called the convolutional bidirectional long short-term memory (CB-LSTM) model. The introduction of the CB-LSTM model enables the fall detection system to capture both temporal sequential and spatial features simultaneously, thereby enhancing the accuracy and reliability of the detection. Extensive comparison experiments demonstrate that our model achieves an accuracy of 98.83% in detecting falls, surpassing other relevant methods currently available. In summary, this study provides effective technical support using the frequency spectrum and deep learning methods to monitor falls among the elderly through the design and experimental validation of a radar-based fall detection system, which has great potential for improving quality of life for the elderly and providing timely rescue measures.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。