In fMRI research, one often aims to examine activation in specific functional regions of interest (fROIs). Current statistical methods tend to localize fROIs inconsistently, focusing on avoiding detection of false activation. Not missing true activation is however equally important in this context. In this study, we explored the potential of an alternative-based thresholding (ABT) procedure, where evidence against the null hypothesis of no effect and evidence against a prespecified alternative hypothesis is measured to control both false positives and false negatives directly. The procedure was validated in the context of localizer tasks on simulated brain images and using a real data set of 100 runs per subject. Voxels categorized as active with ABT can be confidently included in the definition of the fROI, while inactive voxels can be confidently excluded. Additionally, the ABT method complements classic null hypothesis significance testing with valuable information by making a distinction between voxels that show evidence against both the null and alternative and voxels for which the alternative hypothesis cannot be rejected despite lack of evidence against the null.
Introducing Alternative-Based Thresholding for Defining Functional Regions of Interest in fMRI.
阅读:3
作者:Degryse Jasper, Seurinck Ruth, Durnez Joke, Gonzalez-Castillo Javier, Bandettini Peter A, Moerkerke Beatrijs
| 期刊: | Frontiers in Neuroscience | 影响因子: | 3.200 |
| 时间: | 2017 | 起止号: | 2017 Apr 21; 11:222 |
| doi: | 10.3389/fnins.2017.00222 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
