MOTIVATION: Text mining has become an important tool for biomedical research. The most fundamental text-mining task is the recognition of biomedical named entities (NER), such as genes, chemicals and diseases. Current NER methods rely on pre-defined features which try to capture the specific surface properties of entity types, properties of the typical local context, background knowledge, and linguistic information. State-of-the-art tools are entity-specific, as dictionaries and empirically optimal feature sets differ between entity types, which makes their development costly. Furthermore, features are often optimized for a specific gold standard corpus, which makes extrapolation of quality measures difficult. RESULTS: We show that a completely generic method based on deep learning and statistical word embeddings [called long short-term memory network-conditional random field (LSTM-CRF)] outperforms state-of-the-art entity-specific NER tools, and often by a large margin. To this end, we compared the performance of LSTM-CRF on 33 data sets covering five different entity classes with that of best-of-class NER tools and an entity-agnostic CRF implementation. On average, F1-score of LSTM-CRF is 5% above that of the baselines, mostly due to a sharp increase in recall. AVAILABILITY AND IMPLEMENTATION: The source code for LSTM-CRF is available at https://github.com/glample/tagger and the links to the corpora are available at https://corposaurus.github.io/corpora/ . CONTACT: habibima@informatik.hu-berlin.de.
Deep learning with word embeddings improves biomedical named entity recognition.
阅读:6
作者:Habibi Maryam, Weber Leon, Neves Mariana, Wiegandt David Luis, Leser Ulf
| 期刊: | Bioinformatics | 影响因子: | 5.400 |
| 时间: | 2017 | 起止号: | 2017 Jul 15; 33(14):i37-i48 |
| doi: | 10.1093/bioinformatics/btx228 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
