Analyzing anatomic shapes of tissues and organs is pivotal for accurate disease diagnostics and clinical decision-making. One prominent disease that depends on anatomic shape analysis is osteoarthritis, which affects 30 million Americans. To advance osteoarthritis diagnostics and prognostics, we introduce ShapeMed-Knee, a 3D shape dataset with 9,376 high-resolution, medical-imaging-based 3D shapes of both femur bone and cartilage. Besides data, ShapeMed-Knee includes two benchmarks for assessing reconstruction accuracy and five clinical prediction tasks that assess the utility of learned shape representations. Leveraging ShapeMed-Knee, we develop and evaluate a novel hybrid explicit-implicit neural shape model which achieves up to 40% better reconstruction accuracy than a statistical shape model and two implicit neural shape models. Our hybrid models achieve state-of-the-art performance for preserving cartilage biomarkers (root mean squared error ⤠0.05 vs. ⤠0.07, 0.10, and 0.14). Our models are also the first to successfully predict localized structural features of osteoarthritis, outperforming shape models and convolutional neural networks applied to raw magnetic resonance images and segmentations (e.g., osteophyte size and localization 63% accuracy vs. 49-61%). The ShapeMed-Knee dataset provides medical evaluations to reconstruct multiple anatomic surfaces and embed meaningful disease-specific information. ShapeMed-Knee reduces barriers to applying 3D modeling in medicine, and our benchmarks highlight that advancements in 3D modeling can enhance the diagnosis and risk stratification for complex diseases. The dataset, code, and benchmarks are freely accessible.
ShapeMed-Knee: A Dataset and Neural Shape Model Benchmark for Modeling 3D Femurs.
阅读:5
作者:Gatti Anthony A, Blankemeier Louis, Van Veen Dave, Hargreaves Brian, Delp Scott L, Gold Garry E, Kogan Feliks, Chaudhari Akshay S
| 期刊: | IEEE Transactions on Medical Imaging | 影响因子: | 9.800 |
| 时间: | 2025 | 起止号: | 2025 Mar;44(3):1140-1152 |
| doi: | 10.1109/TMI.2024.3485613 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
