In recent days, COVID-19 pandemic has affected several people's lives globally and necessitates a massive number of screening tests to detect the existence of the coronavirus. At the same time, the rise of deep learning (DL) concepts helps to effectively develop a COVID-19 diagnosis model to attain maximum detection rate with minimum computation time. This paper presents a new Residual Network (ResNet) based Class Attention Layer with Bidirectional LSTM called RCAL-BiLSTM for COVID-19 Diagnosis. The proposed RCAL-BiLSTM model involves a series of processes namely bilateral filtering (BF) based preprocessing, RCAL-BiLSTM based feature extraction, and softmax (SM) based classification. Once the BF technique produces the preprocessed image, RCAL-BiLSTM based feature extraction process takes place using three modules, namely ResNet based feature extraction, CAL, and Bi-LSTM modules. Finally, the SM layer is applied to categorize the feature vectors into corresponding feature maps. The experimental validation of the presented RCAL-BiLSTM model is tested against Chest-X-Ray dataset and the results are determined under several aspects. The experimental outcome pointed out the superior nature of the RCAL-BiLSTM model by attaining maximum sensitivity of 93.28%, specificity of 94.61%, precision of 94.90%, accuracy of 94.88%, F-score of 93.10% and kappa value of 91.40%.
An effective deep residual network based class attention layer with bidirectional LSTM for diagnosis and classification of COVID-19.
阅读:3
作者:Pustokhin Denis A, Pustokhina Irina V, Dinh Phuoc Nguyen, Phan Son Van, Nguyen Gia Nhu, Joshi Gyanendra Prasad, K Shankar
| 期刊: | J Appl Stat | 影响因子: | 0.000 |
| 时间: | 2023 | 起止号: | 2020 Nov 24; 50(3):477-494 |
| doi: | 10.1080/02664763.2020.1849057 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
