Implementing a Compression Technique on the Progressive Contextual Excitation Network for Smart Farming Applications.

阅读:4
作者:Prakosa Setya Widyawan, Leu Jenq-Shiou, Hsieh He-Yen, Avian Cries, Bai Chia-Hung, Vítek Stanislav
The utilization of computer vision in smart farming is becoming a trend in constructing an agricultural automation scheme. Deep learning (DL) is famous for the accurate approach to addressing the tasks in computer vision, such as object detection and image classification. The superiority of the deep learning model on the smart farming application, called Progressive Contextual Excitation Network (PCENet), has also been studied in our recent study to classify cocoa bean images. However, the assessment of the computational time on the PCENet model shows that the original model is only 0.101s or 9.9 FPS on the Jetson Nano as the edge platform. Therefore, this research demonstrates the compression technique to accelerate the PCENet model using pruning filters. From our experiment, we can accelerate the current model and achieve 16.7 FPS assessed in the Jetson Nano. Moreover, the accuracy of the compressed model can be maintained at 86.1%, while the original model is 86.8%. In addition, our approach is more accurate than ResNet18 as the state-of-the-art only reaches 82.7%. The assessment using the corn leaf disease dataset indicates that the compressed model can achieve an accuracy of 97.5%, while the accuracy of the original PCENet is 97.7%.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。