DeepAutoGlioma: a deep learning autoencoder-based multi-omics data integration and classification tools for glioma subtyping.

阅读:6
作者:Munquad Sana, Das Asim Bikas
BACKGROUND AND OBJECTIVE: The classification of glioma subtypes is essential for precision therapy. Due to the heterogeneity of gliomas, the subtype-specific molecular pattern can be captured by integrating and analyzing high-throughput omics data from different genomic layers. The development of a deep-learning framework enables the integration of multi-omics data to classify the glioma subtypes to support the clinical diagnosis. RESULTS: Transcriptome and methylome data of glioma patients were preprocessed, and differentially expressed features from both datasets were identified. Subsequently, a Cox regression analysis determined genes and CpGs associated with survival. Gene set enrichment analysis was carried out to examine the biological significance of the features. Further, we identified CpG and gene pairs by mapping them in the promoter region of corresponding genes. The methylation and gene expression levels of these CpGs and genes were embedded in a lower-dimensional space with an autoencoder. Next, ANN and CNN were used to classify subtypes using the latent features from embedding space. CNN performs better than ANN for subtyping lower-grade gliomas (LGG) and glioblastoma multiforme (GBM). The subtyping accuracy of CNN was 98.03% (± 0.06) and 94.07% (± 0.01) in LGG and GBM, respectively. The precision of the models was 97.67% in LGG and 90.40% in GBM. The model sensitivity was 96.96% in LGG and 91.18% in GBM. Additionally, we observed the superior performance of CNN with external datasets. The genes and CpGs pairs used to develop the model showed better performance than the random CpGs-gene pairs, preprocessed data, and single omics data. CONCLUSIONS: The current study showed that a novel feature selection and data integration strategy led to the development of DeepAutoGlioma, an effective framework for diagnosing glioma subtypes.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。