ResGRU: A Novel Hybrid Deep Learning Model for Compound Fault Diagnosis in Photovoltaic Arrays Considering Dust Impact.

阅读:5
作者:Liu Xi, Goh Hui Hwang, Xie Haonan, He Tingting, Yew Weng Kean, Zhang Dongdong, Dai Wei, Kurniawan Tonni Agustiono
With the widespread deployment of photovoltaic (PV) power stations, timely identification and rectification of module defects are crucial for extending service life and preserving efficiency. PV arrays, subjected to severe outside circumstances, are prone to defects exacerbated by dust accumulation, potentially leading to complex compound faults. The resemblance between individual and compound faults sometimes leads to misclassification. To address this challenge, this paper presents a novel hybrid deep learning model, ResGRU, which integrates a residual network (ResNet) with bidirectional gated recurrent units (BiGRU) to improve fault diagnostic accuracy. Additionally, a Squeeze-and-Excitation (SE) module is incorporated to enhance relevant features while suppressing irrelevant ones, hence improving performance. To further optimize inter-class separability and intra-class compactness, a center loss function is employed as an auxiliary loss to enhance the model's discriminative capacity. This proposed method facilitates the automated extraction of fault features from I-V curves and accurate diagnosis of individual faults, partial shading scenarios, and compound faults under varying levels of dust accumulation, hence aiding in the formulation of efficient cleaning schedules. Experimental findings indicate that the suggested model achieves 99.94% accuracy on pristine data and 98.21% accuracy on noisy data, markedly surpassing established techniques such as artificial neural networks (ANN), ResNet, random forests (RF), multi-scale SE-ResNet, and other ResNet-based approaches. Thus, the model offers a reliable solution for accurate PV array fault diagnosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。