Structure-Activity Relationships for a Recently Controlled Synthetic Cathinone Dopamine Transporter Reuptake Inhibitor: α-Pyrrolidinohexiophenone (α-PHP).

阅读:5
作者:Davies Rachel A, Nguyen Vy T, Eltit Jose M, Glennon Richard A
α-Pyrrolidinohexiophenone (α-PHP) is the one-carbon unit α-extended homolog of the better-known and widely abused synthetic cathinone central stimulant α-PVP ("flakka"); both are now U.S. Schedule I controlled substances. Structurally, α-PVP and α-PHP possess a common terminal N-pyrrolidine moiety and differ only with respect to the length of their α-alkyl chain. Using a synaptosomal assay, we previously reported that α-PHP is at least as potent as α-PVP as a dopamine transporter (DAT) reuptake inhibitor. A systematic structure-activity study of synthetic cathinones (e.g., α-PHP) as DAT reuptake inhibitors (i.e., transport blockers), a mechanism thought responsible for their abuse liability, has yet to be conducted. Here, we examined a series of 4-substituted α-PHP analogues and found that, with one exception, all behaved as relatively (28- to >300-fold) selective DAT versus serotonin transporter (SERT) reuptake inhibitors with DAT inhibition potencies of most falling within a very narrow (i.e., <3-fold) range. The 4-CF(3) analogue of α-PHP was a confirmed "outlier" in that it was at least 80-fold less potent than the other analogues and displayed reduced (i.e., no) DAT vs SERT selectivity. Consideration of various physicochemical properties of the CF(3) group, relative to that of the other substituents involved here, provided relatively little insight. Unlike with DAT-releasing agents, as previously reported by us, a QSAR study was precluded because of the limited range of empirical results (with the exception of the 4-CF(3) analogue) for DAT reuptake inhibition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。