Evaluating vestibular contributions to rotation and tilt perception.

阅读:5
作者:Kobel Megan J, Wagner Andrew R, Merfeld Daniel M
Vestibular perceptual thresholds provide insights into sensory function and have shown clinical and functional relevance. However, specific sensory contributions to tilt and rotation thresholds have been incompletely characterized. To address this limitation, tilt thresholds (i.e., rotations about earth-horizontal axes) were quantified to assess canal-otolith integration, and rotation thresholds (i.e., rotations about earth-vertical axes) were quantified to assess perception mediated predominantly by the canals. To determine the maximal extent to which non-vestibular sensory cues (e.g., tactile) can contribute to tilt and rotation thresholds, we tested two patients with completely absent vestibular function and compared their data to those obtained from two separate cohorts of young (≤ 40 years), healthy adults. As one primary finding, thresholds for all motions were elevated by approximately 2-35 times in the absence of vestibular function, thus, confirming predominant vestibular contributions to both rotation and tilt self-motion perception. For patients without vestibular function, rotation thresholds showed larger increases relative to healthy adults than tilt thresholds. This suggests that increased extra-vestibular (e.g., tactile or interoceptive) sensory cues may contribute more to the perception of tilt than rotation. In addition, an impact of stimulus frequency was noted, suggesting increased vestibular contributions relative to other sensory systems can be targeted on the basis of stimulus frequency.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。