Finite Element Solutions for Magnetic Field Problems in Terfenol-D Transducers.

阅读:8
作者:Teng Duo, Li Yatian
An appropriate magnetic design helps ensure that the Terfenol-D (Terbium- Dysprosium-Iron alloy) rods in giant magnetostrictive transducers have the perfect magnetostriction ability. To determine the optimum Terfenol-D rod state, a segmented stack configuration comprised by the Terfenol-D rods and NdFeB (neodymium-iron-boron) permanent magnets is presented. The bias magnetic field distributions simulated through the finite element method indicate that the segmented stack configuration is one effective way to produce the desired bias magnetic field. Particularly for long stacks, establishing a majority of domain to satisfy the desired bias magnetic field range is feasible. On the other hand, the eddy current losses of Terfenol-D rods are also the crucial to their magnetostriction ability. To reduce eddy current losses, the configuration with digital slots in the Terfenol-D rods is presented. The induced eddy currents and the losses are estimated. The simulations reveal that the digital slots configuration decreases the eddy current losses by 78.5% compared to the same size Terfenol-D rod with only a hole. A Terfenol-D transducer prototype has been manufactured using a Terfenol-D rod with a mechanical prestress of about 10 MPa and a bias magnetic field of about 42 kA/m. Its maximum transmitting current response of 185.4 dB at 3.75 kHz indicates its practicability for application as an underwater projector.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。