Identifying Tampered Radio-Frequency Transmissions in LoRa Networks Using Machine Learning.

阅读:8
作者:Senol Nurettin Selcuk, Rasheed Amar, Baza Mohamed, Alsabaan Maazen
Long-range networks, renowned for their long-range, low-power communication capabilities, form the backbone of many Internet of Things systems, enabling efficient and reliable data transmission. However, detecting tampered frequency signals poses a considerable challenge due to the vulnerability of LoRa devices to radio-frequency interference and signal manipulation, which can undermine both data integrity and security. This paper presents an innovative method for identifying tampered radio frequency transmissions by employing five sophisticated anomaly detection algorithms-Local Outlier Factor, Isolation Forest, Variational Autoencoder, traditional Autoencoder, and Principal Component Analysis within the framework of a LoRa-based Internet of Things network structure. The novelty of this work lies in applying image-based tampered frequency techniques with these algorithms, offering a new perspective on securing LoRa transmissions. We generated a dataset of over 26,000 images derived from real-world experiments with both normal and manipulated frequency signals by splitting video recordings of LoRa transmissions into frames to thoroughly assess the performance of each algorithm. Our results demonstrate that Local Outlier Factor achieved the highest accuracy of 97.78%, followed by Variational Autoencoder, traditional Autoencoder and Principal Component Analysis at 97.27%, and Isolation Forest at 84.49%. These findings highlight the effectiveness of these methods in detecting tampered frequencies, underscoring their potential for enhancing the reliability and security of LoRa networks.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。