We describe a general Godunov-type splitting for numerical simulations of the Fisher-Kolmogorov-Petrovski-Piskunov growth and diffusion equation on a world map with Neumann boundary conditions. The procedure is semi-implicit, hence quite stable. Our principal application for this solver is modeling human population dispersal over geographical maps with changing paleovegetation and paleoclimate in the late Pleistocene. As a proxy for carrying capacity we use Net Primary Productivity (NPP) to predict times for human arrival in the Americas.
A Stable Finite-Difference Scheme for Population Growth and Diffusion on a Map.
阅读:3
作者:Petersen W P, Callegari S, Lake G R, Tkachenko N, Weissmann J D, Zollikofer Ch P E
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2017 | 起止号: | 2017 Jan 13; 12(1):e0167514 |
| doi: | 10.1371/journal.pone.0167514 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
