Poor water-solubility of emerging new chemotherapeutic drugs lead to low absorption and tissue bioavailability. Improved drug delivery has therefore recently been achieved through the versatile physico-chemical properties of nanocrystals (NCs) in targeted cancer therapies. Here, nanocrystalization was used with xanthatin, a not highly water-soluble natural sesquiterpene lactone compound that possesses anti-tumour properties and which was recently investigated for potential use in the treatment of cancer and autoimmune diseases. Given that tumour-promoting inflammation is a hallmark of colorectal cancer (CRC), and that epidemiological studies associated inflammatory biomarkers to CRC poor prognosis and therapy resistance, the anti-inflammatory properties of xanthatin NCs were assessed in 2D monolayers and in 3D spheroids of a human HT29 CRC cell model. The 3D spheroids being a model recapitulating a cancer stem cells and chemoresistant phenotype. HT29 2D monolayer cell response was first tested against four pro-inflammatory inducers including phorbol-12-myristate-13-acetate, tumour necrosis factor alpha (TNFα), transforming growth factor beta, and Concanavalin A. Of these inducers, HT29 cell response to TNFα resulted in the most elevated expression of cyclooxygenase (COX)-2 which was prevented by commercial xanthatin along with the phosphorylation of the extracellular signal-regulated kinase 1/2 and of IkappaB (IκB). Alteration of 3D spheroids formation and of the inflammatory/immunity transcriptomic signature was also found better altered by xanthatin NCs in comparison to commercial xanthatin and the isolated molecule. Collectively, our data indicate that xanthatin nanocrystallization did not alter the potential in vitro anti-inflammatory and anticancer properties of xanthatin against a 3D CRC chemoresistance cellular model. These properties make NCs a significant advancement in the field of cancer theranostics to improve patient outcomes.
Xanthatin nanocrystals exert anti-inflammatory properties against TNFα-primed 2D monolayers and in 3D spheroids of human HT29 colorectal cancer cells.
阅读:15
作者:Berenguer Roque Aleksandra, Zgheib Alain, Salomon-Izquierdo Suslebys, Manso Peña Amanda, Osoria Alfonso Luis A, Piloto-Ferrer Janet, Annabi Borhane
| 期刊: | Discover Nano | 影响因子: | 4.500 |
| 时间: | 2025 | 起止号: | 2025 May 19; 20(1):83 |
| doi: | 10.1186/s11671-025-04257-z | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
