AIMS: Telemedical interventions in heart failure patients intend to avoid unfavourable, indication-related events by an early, individualized care, which reacts to the current patients need. However, telemedical support is an expensive intervention, and usually only patients with high risk for unfavourable follow-up events will be able to profit from it. Möckel et al. therefore adapted a new design which we call 'prognostic-efficacy-combination design'. This design allows to define a biomarker cut-off and to perform a randomized controlled trial (RCT) in a biomarker-selected population within a single study. However, so far, it has not been evaluated if this double use of the control group for biomarker cut-off definition and efficacy assessment within the RCT leads to a bias in treatment effect estimation. In this methodological research work, we therefore want to evaluate whether the 'prognostic-efficacy-combination design' leads to biased treatment effect estimates and also compare it to alternative designs. If there is a bias, we further want to analyse its magnitude under different parameter settings. METHODS: We perform a systematic Monte Carlo simulation study to investigate among others potential bias, root mean square error and sensitivity, and specificity as well as the total treatment effect estimate in various realistic trial scenarios that mimic and vary the true data characteristics of the published TIM-HF2 Trial. In particular, we vary the event proportion, the sample size, the biomarker distribution, and the lower bound for the sensitivity. RESULTS: The results show that indeed the proposed design leads to some bias in the effect estimators, indicating an overestimation of the effect. However, this bias is relatively small in most scenarios. CONCLUSIONS: The 'prognostic-efficacy-combination design' can generally be recommended for clinical applications due to its efficiency compared to two separate trials. We recommend a sufficiently large sample size depending on the trial scenario. Our simulation code can be adapted to explore suitable sample sizes for other settings.
Performance evaluation of a new prognostic-efficacy-combination design in the context of telemedical interventions.
阅读:6
作者:Pigorsch Mareen, Möckel Martin, Gehrig Stefan, Wiemer Jan C, Koehler Friedrich, Rauch Geraldine
| 期刊: | Esc Heart Failure | 影响因子: | 3.700 |
| 时间: | 2022 | 起止号: | 2022 Dec;9(6):4030-4042 |
| doi: | 10.1002/ehf2.14122 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
