Language Statistics at Different Spatial, Temporal, and Grammatical Scales.

阅读:3
作者:Sánchez-Puig Fernanda, Lozano-Aranda Rogelio, Pérez-Méndez Dante, Colman Ewan, Morales-Guzmán Alfredo J, Rivera Torres Pedro Juan, Pineda Carlos, Gershenson Carlos
In recent decades, the field of statistical linguistics has made significant strides, which have been fueled by the availability of data. Leveraging Twitter data, this paper explores the English and Spanish languages, investigating their rank diversity across different scales: temporal intervals (ranging from 3 to 96 h), spatial radii (spanning 3 km to over 3000 km), and grammatical word ngrams (ranging from 1-grams to 5-grams). The analysis focuses on word ngrams, examining a time period of 1 year (2014) and eight different countries. Our findings highlight the relevance of all three scales with the most substantial changes observed at the grammatical level. Specifically, at the monogram level, rank diversity curves exhibit remarkable similarity across languages, countries, and temporal or spatial scales. However, as the grammatical scale expands, variations in rank diversity become more pronounced and influenced by temporal, spatial, linguistic, and national factors. Additionally, we investigate the statistical characteristics of Twitter-specific tokens, including emojis, hashtags, and user mentions, revealing a sigmoid pattern in their rank diversity function. These insights contribute to quantifying universal language statistics while also identifying potential sources of variation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。