A novel microRNA signature for pathological grading in lung adenocarcinoma based on TCGA and GEO data.

阅读:4
作者:Yang Zhiyu, Yin Hongkun, Shi Lei, Qian Xiaohua
Lung adenocarcinoma (LUAD) is one of the most common types of lung cancer and its poor prognosis largely depends on the tumor pathological stage. Critical roles of microRNAs (miRNAs) have been reported in the tumorigenesis and progression of lung cancer. However, whether the differential expression pattern of miRNAs could be used to distinguish early‑stage (stage I) from mid‑late‑stage (stages II‑IV) LUAD tumors is still unclear. In this study, clinical information and miRNA expression profiles of patients with LUAD were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus databases. TCGA‑LUAD (n=470) dataset was used for model training and validation, and the GSE62182 (n=94) and GSE83527 (n=36) datasets were used as external independent test datasets. The diagnostic model was created through miRNA feature selection followed by SVM classifier and was confirmed by 5‑fold cross‑validation. A receiver operating characteristic curve was calculated to evaluate the accuracy and robustness of the model. Using the DX score and LIBSVM tool, a 16‑miRNA signature that could distinguish LUAD pathological stages was identified. The area under the curve rates were 0.62 [95% confidence interval (CI): 0.56‑0.67], 0.66 (95% CI: 0.54‑0.76) and 0.63 (95% CI: 0.43‑0.82) in TCGA‑LUAD internal validation dataset, the GSE62182 external validation dataset, and the GSE83527 external validation dataset, respectively. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analyses suggested that the target genes of the 16‑miRNA signature were mainly involved in metabolic pathways. The present findings demonstrate that a 16‑miRNA signature could serve as a promising diagnostic biomarker for pathological staging in LUAD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。