Synthesis, Characterization, and BSA Binding Properties of Carboxylated Merocyanine-Based Fluorophores.

阅读:4
作者:Duarte Rodrigo C, Cercená Rodrigo, de Araujo Bruno B, Chaves Otávio A, Gonçalves Paulo F B, Zapp Eduardo, Santos Fabiano S, Rodembusch Fabiano S, Dal-Bó Alexandre G
This study describes the synthesis of new carboxylated merocyanine dyes by Knoevenagel condensation between 4-carboxybenzaldehyde and indolium/benzoindolium- and benzothiazolium-based coupling compounds. The condensations were performed in the presence of ammonium acetate, and the products were obtained in good yields after simple purification. These merocyanines exhibit UV-A-to-blue absorption and blue-to-green fluorescence emission, characterized by relatively large Stokes shift values (∼5000 cm(-1)). In addition, quantum chemical calculations were conducted to better explore the electronic and photophysical properties of the merocyanines under study. Thermal analysis via thermogravimetric analysis (TGA) revealed distinct decomposition stages for the merocyanines, with stability up to 200 °C. Cyclic voltammetry revealed irreversible waves for donor oxidation and acceptor reduction. On the basis of the onset potentials, the highest occupied molecular orbital (HOMO) energies were estimated to be between -5.38 and -5.47 eV, and the lowest unoccupied molecular orbital (LUMO) energies were calculated to range from -3.20 to -3.24 eV. These values suggest a narrow electrochemical band gap of 2.07 to 2.13 eV. Finally, fluorescence quenching experiments using the intrinsic fluorescence of the Trp residues in BSA were successfully applied to these compounds, indicating strong interactions with this protein via a static mechanism. The docking simulations corroborated the interaction between the merocyanines and BSA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。