Dimension reduction, cell clustering, and cell-cell communication inference for single-cell transcriptomics with DcjComm.

阅读:5
作者:Ding Qian, Yang Wenyi, Xue Guangfu, Liu Hongxin, Cai Yideng, Que Jinhao, Jin Xiyun, Luo Meng, Pang Fenglan, Yang Yuexin, Lin Yi, Liu Yusong, Sun Haoxiu, Tan Renjie, Wang Pingping, Xu Zhaochun, Jiang Qinghua
Advances in single-cell transcriptomics provide an unprecedented opportunity to explore complex biological processes. However, computational methods for analyzing single-cell transcriptomics still have room for improvement especially in dimension reduction, cell clustering, and cell-cell communication inference. Herein, we propose a versatile method, named DcjComm, for comprehensive analysis of single-cell transcriptomics. DcjComm detects functional modules to explore expression patterns and performs dimension reduction and clustering to discover cellular identities by the non-negative matrix factorization-based joint learning model. DcjComm then infers cell-cell communication by integrating ligand-receptor pairs, transcription factors, and target genes. DcjComm demonstrates superior performance compared to state-of-the-art methods.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。