Oltipraz Prevents High Glucose-Induced Oxidative Stress and Apoptosis in RSC96 Cells through the Nrf2/NQO1 Signalling Pathway

奥替普拉通过 Nrf2/NQO1 信号通路预防 RSC96 细胞高糖诱导的氧化应激和凋亡

阅读:5
作者:Zengxin Jiang, Mengxuan Bian, Jingping Wu, Defang Li, Lei Ding, Qingmin Zeng

Abstract

Diabetic peripheral neuropathy (DPN) is a common complication of diabetes mellitus (DM). Schwann cell (SC) apoptosis contributes to the occurrence and development of DPN. Effective drugs to prevent SC apoptosis are required to relieve and reverse peripheral nerve injury caused by DM. Oltipraz [4-methyl-5-(2-pyrazinyl)-1,2-dithiole-3-thione], an agonist of nuclear factor erythroid derived-2-related factor 2 (Nrf2), exerts strong effect against oxidative stress in animal models or clinical patients in certain diseases, including heart failure, acute kidney injury, and liver injury. The aim of the present study was to determine the effectiveness of oltipraz in preventing SC apoptosis induced by high glucose levels. RSC96 cells pretreated with oltipraz were cultured in high-glucose medium (50 mM glucose) for 24 h, and cells cultured in medium containing 5 mM glucose were used as the control. Flow cytometry was used to evaluate the degree of apoptosis. A Cell Counting Kit-8 assay was used to assess cell viability. The mitochondrial membrane potential was assessed using JC-1 staining, and reactive oxygen species (ROS) generation was measured using 20,70-dichlorodihydrofluorescein diacetate staining. In addition, the levels of malondialdehyde (MDA) and superoxide dismutase (SOD) levels were also evaluated using the corresponding kits. Flow cytometry was subsequently used to detect apoptosis, and western blotting was used to measure the expression levels of nuclear factor erythroid derived-2-related factor 2 and NADPH quinone oxidoreductase 1. The results showed that high glucose concentration increased oxidative stress and apoptosis in RSC96 cells. Oltipraz improved cell viability and reduced apoptosis of RSC96 cells in the high glucose environment. Additionally, oltipraz exhibited a significant antioxidative effect, as shown by the decrease in MDA levels, increased SOD levels, and reduced ROS generation in RSC96 cells. The results of the present study suggest that oltipraz exhibits potential as an effective drug for treatment with DPN.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。