Activation of the cannabinoid type 1 (CB1) receptor, a major G-protein-coupled receptor in brain, acts to regulate neuronal excitability and has been shown to mediate the anticonvulsant effects of cannabinoids in several animal models of seizure, including the rat pilocarpine model of acquired epilepsy. However, the long-term effects of status epilepticus on the expression and function of the CB1 receptor have not been described. Therefore, this study was initiated to evaluate the effect of status epilepticus on CB1 receptor expression, binding, and G-protein activation in the rat pilocarpine model of acquired epilepsy. Using immunohistochemistry, we demonstrated that status epilepticus causes a unique "redistribution" of hippocampal CB1 receptors, consisting of specific decreases in CB1 immunoreactivity in the dense pyramidal cell layer neuropil and dentate gyrus inner molecular layer, and increases in staining in the CA1-3 strata oriens and radiatum. In addition, this study demonstrates that the redistribution of CB1 receptor expression results in corresponding functional changes in CB1 receptor binding and G-protein activation using [3H] R+-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazin-yl](1-napthalen-yl)methanone mesylate (WIN55,212-2) and agonist-stimulated [35S]GTPgammaS autoradiography, respectively. The redistribution of CB1 receptor-mediated [35S]GTPgammaS binding was 1) attributed to an altered maximal effect (Emax) of WIN55,212-2 to stimulate [35S]GTPgammaS binding, 2) reversed by the CB1 receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide hydrochloride (SR141716A), 3) confirmed by the use of other CB1 receptor agonists, and 4) not reproduced in other G-protein-coupled receptor systems examined. These results demonstrate that status epilepticus causes a unique and selective reorganization of the CB1 receptor system that persists as a permanent hippocampal neuronal plasticity change associated with the development of acquired epilepsy.
Status epilepticus causes a long-lasting redistribution of hippocampal cannabinoid type 1 receptor expression and function in the rat pilocarpine model of acquired epilepsy.
阅读:4
作者:Falenski K W, Blair R E, Sim-Selley L J, Martin B R, DeLorenzo R J
| 期刊: | Neuroscience | 影响因子: | 2.800 |
| 时间: | 2007 | 起止号: | 2007 May 25; 146(3):1232-44 |
| doi: | 10.1016/j.neuroscience.2007.01.065 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
