Cocaine-associated cues acquire incentive motivational effects that manifest as craving in humans and cocaine-seeking behavior in rats. We have reported an increase in neuronal activation in rats, measured by Fos protein expression, in various limbic and cortical regions following exposure to cocaine-associated cues. This study examined whether the conditioned neuronal activation involves glutamate AMPA receptors by measuring coexpression of Fos and AMPA glutamate receptor subunits (GluR1, GluR2/3, or GluR4). Rats trained to self-administer cocaine subsequently underwent 22 days of abstinence, during which they were exposed daily to either the self-administration environment with presentations of the light/tone cues previously paired with cocaine infusions (Extinction group) or an alternate environment (No Extinction group). All rats were then tested for cocaine-seeking behavior (i.e. responses without cocaine reinforcement) and Fos and AMPA glutamate receptor subunits were measured postmortem using immunocytochemistry. The No Extinction group exhibited increases in cocaine-seeking behavior and Fos expression in limbic and cortical regions relative to the Extinction group. A large number of Fos immunoreactive cells coexpressed GluR1, GluR2/3, and GluR4, suggesting that an action of glutamate at AMPA receptors may in part drive cue-elicited Fos expression. Importantly, there was an increase in the percentage of cells colabeled with Fos and GluR1 in the anterior cingulate and nucleus accumbens shell and cells colabeled with Fos and GluR4 in the infralimbic cortex, suggesting that within these regions, a greater, and perhaps even different, population of AMPA receptor subunit-expressing neurons is activated in rats engaged in cocaine-seeking behavior.
Fos and glutamate AMPA receptor subunit coexpression associated with cue-elicited cocaine-seeking behavior in abstinent rats.
阅读:4
作者:Zavala A R, Biswas S, Harlan R E, Neisewander J L
| 期刊: | Neuroscience | 影响因子: | 2.800 |
| 时间: | 2007 | 起止号: | 2007 Mar 16; 145(2):438-52 |
| doi: | 10.1016/j.neuroscience.2006.12.038 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
