Study on ring-road incident duration based on latent class accelerated hazard model.

阅读:3
作者:Shen Qiangru, Xie Xun, Li Gen, Wu Lan, Zhao Le, Yang Zhen
Accurately estimating the duration of freeway incidents can enhance emergency management practices and reduce the likelihood of secondary incidents. To investigate the mechanisms through which key factors influence incident duration, this study sorted out the characteristics and variables of the incident duration on a special freeway in Zhejiang Province, that is, the ring road, and developed a latent class accelerated hazard model. Heterogeneity was incorporated into the model. Three distributions (Weibull, Log-normal, and Log-logistic) were compared, and the Log-logistic distribution exhibited superior performance. The analysis revealed two distinct latent classes: Latent Class 1 and Class 2, had class membership probability of 0.53 and 0.47, respectively, with a total of 11 variables being statistically significant at the 0.05 significance level. It is worth noting that, some neglected explanatory variables are discussed in depth in this study. For example, the mechanism of which specific lane is closed has an impact on the incident duration, rather than a general discussion of the number of lane closures. Furthermore, the way in which the driver involved in the incident reports to the police has a significant impact on the duration of incidents. Notably, potential heterogeneity and its influencing mechanism are captured in the model. Additionally, by predicting class membership using posterior probabilities, it was determined that most data points were more likely to belong to Class 1, and the incident duration primarily ranged between 0 and 60 minutes. These findings are helpful to reduce the duration of incidents on ring-roads and freeways in China, and provide theoretical support for the formulation of freeway incident management and treatment policies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。