Impaired motor learning in mice expressing torsinA with the DYT1 dystonia mutation.

阅读:5
作者:Sharma Nutan, Baxter Mark G, Petravicz Jeremy, Bragg D Cristopher, Schienda Alonna, Standaert David G, Breakefield Xandra O
Primary early-onset generalized dystonia is an autosomal dominant disorder caused by a deletion (DeltaGAG) in the DYT1 gene encoding torsinA. The gene defect has incomplete penetrance, with approximately 30% of carriers developing clinically evident dystonia. We describe lines of transgenic mice that express either human mutant torsinA (hMT) or human wild-type (hWT) torsinA. All mice demonstrated moderately increased levels of torsinA in the brain by Western blot analysis and normal subcellular distribution of torsinA in neurons by confocal microscopy. No animals had dystonic features. However, mice overexpressing hMT, but not hWT, torsinA displayed a reduced ability to learn motor skills in an accelerating rotarod paradigm. This pattern resembles the impaired motor sequence learning demonstrated in human nonmanifesting carriers of the DeltaGAG mutation. Open-field testing showed no differences in spontaneous activity between transgenic mice and their nontransgenic littermates, indicating that mice overexpressing hMT torsinA did not develop overtly abnormal motor behavior. Together, these data suggest that these transgenic mice provide a useful model of the DeltaGAG carrier state that can be used to probe genetic and environmental factors that can trigger the dystonic state.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。