Nearl: extracting dynamic features from molecular dynamics trajectories for machine learning tasks.

阅读:18
作者:Zhang Yang, Vitalis Andreas
SUMMARY: Despite the rapid growth of machine learning in biomolecular applications, information about protein dynamics is underutilized. Here, we introduce Nearl, an automated pipeline designed to extract dynamic features from large ensembles of molecular dynamics trajectories. Nearl aims to identify intrinsic patterns of molecular motion and to provide informative features for predictive modeling tasks. We implement two classes of dynamic features, termed marching observers and property-density flow, to capture local atomic motions while maintaining a view of the global configuration. Complemented by standard voxelization techniques, Nearl transforms substructures of proteins into three-dimensional (3D) grids, suitable for contemporary 3D convolutional neural networks (3D-CNNs). The pipeline leverages graphics processing unit (GPU) acceleration, adheres to the FAIR principles for research software, and prioritizes flexibility and user-friendliness, allowing customization of input formats and feature extraction. AVAILABILITY AND IMPLEMENTATION: The source code of Nearl is hosted at https://github.com/miemiemmmm/Nearl and archived at https://doi.org/10.5281/zenodo.15320286. The documentation is hosted on ReadTheDocs at https://nearl.readthedocs.io/en/latest/. All pre-built models are implemented in PyTorch and available on GitHub.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。