In this paper, we present a novel color edge detection method that integrates collaborative filtering with multiscale gradient fusion. The Block-Matching and 3D (BM3D) filter is utilized to enhance sparse representations in the transform domain, effectively reducing noise. The multiscale gradient fusion technique compensates for the loss of detail in single-scale edge detection, thereby improving both edge resolution and overall quality. RGB images from the dataset are converted into the XYZ color space through mathematical transformations. The Colored Block-Matching and 3D (CBM3D) filter is applied to the sparse images to reduce noise. Next, the vector gradients of the color image and anisotropic Gaussian directional derivatives for two scale parameters are computed. These are then averaged pixel-by-pixel to generate a refined edge strength map. To enhance the edge features, the image undergoes normalization and non-maximum suppression. This is followed by edge contour extraction using double-thresholding and a novel morphological refinement technique. Experimental results on the edge detection dataset demonstrate that the proposed method offers robust noise resistance and superior edge quality, outperforming traditional methods such as Color Sobel, Color Canny, SE, and Color AGDD, as evidenced by performance metrics including the PR curve, AUC, PSNR, MSE, and FOM.
A Multiscale Gradient Fusion Method for Color Image Edge Detection Using CBM3D Filtering.
阅读:3
作者:Feng Zhunruo, Shi Ruomeng, Jiang Yuhan, Han Yiming, Ma Zeyang, Ren Yuheng
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2025 | 起止号: | 2025 Mar 24; 25(7):2031 |
| doi: | 10.3390/s25072031 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
