With the realization that bacteria display phenotypic variability among cells and exhibit complex subcellular organization critical for cellular function and behavior, microscopy has re-emerged as a primary tool in bacterial research during the last decade. However, the bottleneck in today's single-cell studies is quantitative image analysis of cells and fluorescent signals. Here, we address current limitations through the development of Oufti, a stand-alone, open-source software package for automated measurements of microbial cells and fluorescence signals from microscopy images. Oufti provides computational solutions for tracking touching cells in confluent samples, handles various cell morphologies, offers algorithms for quantitative analysis of both diffraction and non-diffraction-limited fluorescence signals and is scalable for high-throughput analysis of massive datasets, all with subpixel precision. All functionalities are integrated in a single package. The graphical user interface, which includes interactive modules for segmentation, image analysis and post-processing analysis, makes the software broadly accessible to users irrespective of their computational skills.
Oufti: an integrated software package for high-accuracy, high-throughput quantitative microscopy analysis.
阅读:3
作者:Paintdakhi Ahmad, Parry Bradley, Campos Manuel, Irnov Irnov, Elf Johan, Surovtsev Ivan, Jacobs-Wagner Christine
| 期刊: | Molecular Microbiology | 影响因子: | 2.600 |
| 时间: | 2016 | 起止号: | 2016 Feb;99(4):767-77 |
| doi: | 10.1111/mmi.13264 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
