EDLaaS:Fully Homomorphic Encryption over Neural Network Graphs for Vision and Private Strawberry Yield Forecasting.

阅读:8
作者:Onoufriou George, Hanheide Marc, Leontidis Georgios
We present automatically parameterised Fully Homomorphic Encryption (FHE) for encrypted neural network inference and exemplify our inference over FHE-compatible neural networks with our own open-source framework and reproducible examples. We use the fourth generation Cheon, Kim, Kim, and Song (CKKS) FHE scheme over fixed points provided by the Microsoft Simple Encrypted Arithmetic Library (MS-SEAL). We significantly enhance the usability and applicability of FHE in deep learning contexts, with a focus on the constituent graphs, traversal, and optimisation. We find that FHE is not a panacea for all privacy-preserving machine learning (PPML) problems and that certain limitations still remain, such as model training. However, we also find that in certain contexts FHE is well-suited for computing completely private predictions with neural networks. The ability to privately compute sensitive problems more easily while lowering the barriers to entry can allow otherwise too-sensitive fields to begin advantaging themselves of performant third-party neural networks. Lastly, we show how encrypted deep learning can be applied to a sensitive real-world problem in agri-food, i.e., strawberry yield forecasting, demonstrating competitive performance. We argue that the adoption of encrypted deep learning methods at scale could allow for a greater adoption of deep learning methodologies where privacy concerns exist, hence having a large positive potential impact within the agri-food sector and its journey to net zero.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。