Visible near-infrared spectroscopy (VNIR) is extensively researched for obtaining soil property information due to its rapid, cost-effective, and environmentally friendly advantages. Despite its widespread application and significant achievements in soil property analysis, current soil prediction models continue to suffer from low accuracy. To address this issue, we propose a convolutional neural network model that can achieve high-precision soil property prediction by creating 2D multi-channel inputs and applying a multi-scale spatial attention mechanism. Initially, we explored two-dimensional multi-channel inputs for seven soil properties in the public LUCAS spectral dataset using the Gramian Angular Field (GAF) method and various preprocessing techniques. Subsequently, we developed a convolutional neural network model with a multi-scale spatial attention mechanism to improve the network's extraction of relevant spatial contextual information. Our proposed model showed superior performance in a statistical comparison with current state-of-the-art techniques. The RMSE (R²) values for various soil properties were as follows: organic carbon content (OC) of 19.083 (0.955), calcium carbonate content (CaCO(3)) of 24.901 (0.961), nitrogen content (N) of 0.969 (0.933), cation exchange capacity (CEC) of 6.52 (0.803), pH in H(2)O of 0.366 (0.927), clay content of 4.845 (0.86), and sand content of 12.069 (0.789). Our proposed model can effectively extract features from visible near-infrared spectroscopy data, contributing to the precise detection of soil properties.
Multi-Scale Spatial Attention-Based Multi-Channel 2D Convolutional Network for Soil Property Prediction.
阅读:3
作者:Feng Guolun, Li Zhiyong, Zhang Junbo, Wang Mantao
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2024 | 起止号: | 2024 Jul 21; 24(14):4728 |
| doi: | 10.3390/s24144728 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
