Plasmonic waveguide design for the enhanced forward stimulated brillouin scattering in diamond.

阅读:4
作者:Liu Qiang, Bibbó Luigi, Albin Sacharia, Wang Qiong, Lin Mi, Lu Huihui, Ouyang Zhengbiao
We propose a scheme of metal/dielectric/metal waveguide for the enhanced forward stimulated Brillouin scattering (FSBS) in diamond that is mediated by gap surface plasmons. Numerical results based on finite-element method show that the maximum Brillouin gain in the small gap (~100 nm) can exceed 10(6) W(-1) m(-1), which is three orders of magnitude higher than that in diamond-only waveguides. It is found that the radiation pressure that exists at the boundaries of metal and diamond plays a dominant role in contributing to the enhanced forward stimulated Brillouin gain, although electrostrictive forces interfere destructively. Detailed study shows that high FSBS gain can still be obtained regardless of the photoelastic property of the dielectric material in the proposed plasmonic waveguide. The strong photon-phonon coupling in this gap-surface-plasmon waveguide may make our design useful in the development of phonon laser, RF wave generation and optomechanical information processing in quantum system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。