Cutting tool wear reduces the quality of the product in production processes. The optimization of both the machining parameters and tool life reliability is an increasing research trend to save manufacturing resources. In the present work, we introduced a computational approach in estimating the tool wear in the turning process using artificial intelligence. Support vector machines (SVM) for regression with Bayesian optimization is used to determine the tool wear based on various machining parameters. A coated insert carbide tool 2025 was utilized in turning tests of 709M40 alloy steel. Experimental data were collected for three machining parameters like feed rate, depth of cut, and cutting speed, while the parameter of tool wear was calculated with a scanning electron microscope (SEM). The SVM model was trained on 162 experimental data points and the trained model was then used to estimate the experimental testing data points to determine the model performance. The proposed SVM model with Bayesian optimization achieved a superior accuracy in estimation of the tool wear with a mean absolute percentage error (MAPE) of 6.13% and root mean square error (RMSE) of 2.29%. The results suggest the feasibility of adopting artificial intelligence methods in estimating the machining parameters to reduce the time and costs of manufacturing processes and contribute toward greater sustainability.
Estimation and Optimization of Tool Wear in Conventional Turning of 709M40 Alloy Steel Using Support Vector Machine (SVM) with Bayesian Optimization.
阅读:8
作者:Alajmi Mahdi S, Almeshal Abdullah M
| 期刊: | Materials | 影响因子: | 3.200 |
| 时间: | 2021 | 起止号: | 2021 Jul 6; 14(14):3773 |
| doi: | 10.3390/ma14143773 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
