The casting magnesium alloy AZ91D cannot be extruded at room temperature. This paper presents a process for extruding internal threads using AZ91D heated by electromagnetic induction. The feasibility of the process is verified by finite element simulation and experiments. Using DEFORM-3D to simulate the process of extruding a M12 Ã 1.25 mm threaded hole by electromagnetic induction-assisted heating, the equivalent stress-strain and material flow law in the process of thread deformation was analyzed and verified by experiments. Three parameters-hole diameter, machine speed and heating temperature-were considered to study the influence of different process conditions on the forming torque. The results show that a heating temperature above 523 K can improve the plasticity of AZ91D. The hole diameter has an important influence on the forming torque. The forming process is not suitable for high-speed machining. The surface metal of the thread formed by this process has a strong deformation layer, which can improve the strength and hardness of the thread.
Finite Element Analysis of Extrusion Process for Magnesium Alloy Internal Threads with Electromagnetic Induction-Assisted Heating and Thread Performance Research.
阅读:4
作者:Liu Meng, Ji Zesheng, Fan Rui, Wang Xingguo
| 期刊: | Materials | 影响因子: | 3.200 |
| 时间: | 2020 | 起止号: | 2020 May 8; 13(9):2170 |
| doi: | 10.3390/ma13092170 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
