In this work, quantum chemical descriptors and a vibrational analysis of 4-Phenylpyrimidine (4-PPy) were also investigated. Through conformational analysis, the most stable conformer can be determined. The geometry of the molecular structure was optimized by using the density functional theory (DFT) at the B3LYP/6-311++G(d,p) level. The theoretically obtained FT-IR and FT-Raman spectral data agree with the experimental results. UV-Vis was done in the gas phase along with different solvents by the TD-DFT method and the PCM solvent model. Molecular electrostatic potential, natural bond orbital analysis, nonlinear optical properties, and global chemical reactivity parameters were described through the DFT method. Besides, the chemical implications of a molecule were explained using an electron localization function and a local orbital locator. We attempted to detect the antiviral activity of the 4-PPy compound by predicting molecular docking into coronavirus 2 (SARS-n-CoV-2) protein structures (6LU7, 6M03, and 6W63), because COVID-19 is known to have serious adverse effects in all areas of human life worldwide, and possible drugs need to be investigated for this. The results of the docking simulation demonstrate good affinities for binding to the receptors.
DFT investigations and molecular docking as potent inhibitors of SARS-CoV-2 main protease of 4-phenylpyrimidine.
阅读:14
作者:Celik, Sibel
| 期刊: | Journal of Molecular Structure | 影响因子: | 4.700 |
| 时间: | 2023 | 起止号: | 2023 Apr 5; 1277:134895 |
| doi: | 10.1016/j.molstruc.2022.134895 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
