The estimation of the parameters of an odour source is of high relevance for multiple applications, but it can be a slow and error prone process. This work proposes a fast particle filter-based method for source term estimation with a mobile robot. Two strategies are implemented in order to reduce the computational cost of the filter and increase its accuracy: firstly, the sampling process is adapted by the mobile robot in order to optimise the quality of the data provided to the estimation process; secondly, the filter is initialised only after collecting preliminary data that allow limiting the solution space and use a shorter number of particles than it would be normally necessary. The method assumes a Gaussian plume model for odour dispersion. This models average odour concentrations, but the particle filter was proved adequate to fit instantaneous concentration measurements to that model, while the environment was being sampled. The method was validated in an obstacle free controlled wind tunnel and the validation results show its ability to quickly converge to accurate estimates of the plume's parameters after a reduced number of plume crossings.
Towards Fast Plume Source Estimation with a Mobile Robot.
阅读:4
作者:Magalhães Hugo, Baptista Rui, Macedo João, Marques Lino
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2020 | 起止号: | 2020 Dec 8; 20(24):7025 |
| doi: | 10.3390/s20247025 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
