Among the great variety of anti-cancer therapeutic strategies, boron neutron capture therapy (BNCT) represents a unique approach that doubles the targeting accuracy due to the precise positioning of a neutron beam and the addressed delivery of boron compounds. We have recently demonstrated the principal possibility of using a cell-specific 2'-F-RNA aptamer for the targeted delivery of boron clusters for BNCT. In the present study, we evaluated the amount of boron-loaded aptamer inside the cell via two independent methods: quantitative real-time polymerase chain reaction and inductive coupled plasma-atomic emission spectrometry. Both assays showed that the internalized boron level inside the cell exceeds 1 Ã 10(9) atoms/cell. We have synthesized closo-dodecaborate conjugates of 2'-F-RNA aptamers GL44 and Waz, with boron clusters attached either at the 3'- or at the 5'-end. The influence of cluster localization was evaluated in BNCT experiments on U-87 MG human glioblastoma cells and normal fibroblasts and subsequent analyses of cell viability via real-time cell monitoring and clonogenic assay. Both conjugates of GL44 aptamer provided a specific decrease in cell viability, while only the 3'-conjugate of the Waz aptamer showed the same effect. Thus, an individual adjustment of boron cluster localization is required for each aptamer. The efficacy of boron-loaded 2'-F-RNA conjugates was comparable to that of (10)B-boronophenylalanine, so this type of boron delivery agent has good potential for BNCT due to such benefits as precise targeting, low toxicity and the possibility to use boron clusters made of natural, unenriched boron.
Aptamers for Addressed Boron Delivery in BNCT: Effect of Boron Cluster Attachment Site on Functional Activity.
阅读:3
作者:Novopashina Darya S, Dymova Maya A, Davydova Anna S, Meschaninova Mariya I, Malysheva Daria O, Kuligina Elena V, Richter Vladimir A, Kolesnikov Iaroslav A, Taskaev Sergey Yu, Vorobyeva Mariya A
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2022 | 起止号: | 2022 Dec 24; 24(1):306 |
| doi: | 10.3390/ijms24010306 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
