Hartree-Fock (HF) and Density Functional Theory (DFT) studies were conducted to assess the impact of potassium doping on the thermodynamic, optoelectronic, electronic and nonlinear optical properties and on the reactivity of photochromic polymers containing styrylquinoline fragments. Doping was carried out on the virgin monomer (M1) and on the derivative monomer (M2) with the nitro group NO(2). Three doped monomers were investigated including, the monomer M3 obtained from M1 by substituting the H atom with a potassium, the monomer M4 by substituting two H atoms and the monomer M5 obtained from M2 by substituting the H atom. Findings proved that the use of potassium and the nitro group is an excellent process to improve the electronics properties of styrylquinoline virgin monomers. In fact, the energy gap decreases from 3.82 eV for M1 to 3.02 eV and to 2.92 eV for M3 and M4, respectively; while the decrease from 3.43 eV for M2 to 2.52 eV for M5 was observed, thus demonstrating the good semiconductor character of the obtained compounds with relevant applications in the manufacture of solar cells. Likewise, the fundamental gap decreases from 6.50 eV for M1 to 5.34 eV and to 4.62 eV for M3 and M4, respectively; while the decrease from 6.11 eV for M2 to 5.21 eV for M5 was observed; thus demonstrating an improvement in the reactivity of our doped monomers. In addition, potassium doping is an appropriate method to enhance optoelectronic properties of styrylquinoline virgin monomers. Thus, the refractive index of our doped monomers is greater than that of glass, which is a reference in optic and can be used under high electric fields of the order of 1.90Â ÃÂ 109 Vm(-1) for monomer M4 up to 7.01Â ÃÂ 109 Vm(-1) for M3 and to 10.89Â ÃÂ 109 Vm(-1) for M5. Finally, the strong enhancement of the linear and nonlinear optical (NLO) properties that we observed leads us to conclude that these doped monomers can be appropriate candidates in devices requiring good NLO properties.
Impact of doping on the optoelectronic, electronic and nonlinear optical properties and on the reactivity of photochromic polymers containing styrylquinoline fragments: Hartree-Fock and DFT study.
阅读:4
作者:Noudem P, Fouejio D, Mveme C D D, Zekeng S S, Fankam Fankam J B
| 期刊: | Heliyon | 影响因子: | 3.600 |
| 时间: | 2022 | 起止号: | 2022 Nov 12; 8(11):e11491 |
| doi: | 10.1016/j.heliyon.2022.e11491 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
