ARAIM Stochastic Model Refinements for GNSS Positioning Applications in Support of Critical Vehicle Applications.

阅读:3
作者:Yang Ling, Sun Nan, Rizos Chris, Jiang Yiping
Integrity monitoring (IM) is essential if GNSS positioning technologies are to be fully trusted by future intelligent transport systems. A tighter and conservative stochastic model can shrink protection levels in the position domain and therefore enhance the user-level integrity. In this study, the stochastic models for vehicle-based GNSS positioning are refined in three respects: (1) Gaussian bounds of precise orbit and clock error products from the International GNSS Service are used; (2) a variable standard deviation to characterize the residual tropospheric delay after model correction is adopted; and (3) an elevation-dependent model describing the receiver-related errors is adaptively refined using least-squares variance component estimation. The refined stochastic models are used for positioning and IM under the Advanced Receiver Autonomous Integrity Monitoring (ARAIM) framework, which is considered the basis for multi-constellation GNSS navigation to support air navigation in the future. These refinements are assessed via global simulations and real data experiments. Different schemes are designed and tested to evaluate the corresponding enhancements on ARAIM availability for both aviation and ground vehicle-based positioning applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。