Mammals localize sounds using information from their two ears. Localization in real-world conditions is challenging, as echoes provide erroneous information and noises mask parts of target sounds. To better understand real-world localization, we equipped a deep neural network with human ears and trained it to localize sounds in a virtual environment. The resulting model localized accurately in realistic conditions with noise and reverberation. In simulated experiments, the model exhibited many features of human spatial hearing: sensitivity to monaural spectral cues and interaural time and level differences, integration across frequency, biases for sound onsets and limits on localization of concurrent sources. But when trained in unnatural environments without reverberation, noise or natural sounds, these performance characteristics deviated from those of humans. The results show how biological hearing is adapted to the challenges of real-world environments and illustrate how artificial neural networks can reveal the real-world constraints that shape perception.
Deep neural network models of sound localization reveal how perception is adapted to real-world environments.
阅读:5
作者:Francl Andrew, McDermott Josh H
| 期刊: | Nature Human Behaviour | 影响因子: | 15.900 |
| 时间: | 2022 | 起止号: | 2022 Jan;6(1):111-133 |
| doi: | 10.1038/s41562-021-01244-z | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
