Microglia plays a complex role in neuroinflammation, which has been implicated in neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. This study aims to explore the effect and mechanism of Dihydromyricetin (DHM) on lipopolysaccharide (LPS)-induced inflammation in microglial BV-2 cells. Cell viability was measured by 3-[4,5-dimethylthiazol-2-yl]2,5-diphenyltetrazolium bromide (MTT) assay. The pro-inflammatory mediators and cytokines including interleukin (IL)-6, IL-1β, and tumor necrosis factor-α (TNF-α); inducible nitric oxide synthase (iNOS); and cyclooxygenase 2 (COX-2) were measured by enzyme-linked immunosorbent assay (ELISA) and/or quantitative real-time PCR (qRT-PCR). The expression of p-p65, p-IκBα, toll-like receptor 4 (TLR4), and myeloid differentiation primary response 88 (MyD88) were analyzed by western blot. The present study showed that DHM treatment alleviated LPS-induced viability reduction, suppressed the mRNA levels of IL-6, IL-1β and TNF-α, inhibited the mRNA and protein expression of iNOS and COX-2, and attenuated the activation of NF-кB and TLR4 signaling in a concentration-dependent manner. In conclusion, DHM exerts an anti-inflammatory effect on LPS-induced BV-2 microglial cells, possibly through TRL4/NF-κB signaling pathway.
Dihydromyricetin Attenuates Inflammation through TLR4/NF-kappaB Pathway.
阅读:2
作者:Jing Nianshui, Li Xinnan
| 期刊: | Open Medicine | 影响因子: | 1.600 |
| 时间: | 2019 | 起止号: | 2019 Sep 15; 14:719-725 |
| doi: | 10.1515/med-2019-0083 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
